MonoRTM


Principal Reference

Clough, S.A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. E. Cady-Pereira, S. Boukabara and P. D. Brown: Atmospheric radiative transfer modeling: A summary of the AER codes, JQSRT, vol 91, no. 2, pp233-244, 2005.

Line Parameter References

Payne, V.H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J-L. Moncet, E. J. Mlawer and S. A. Clough: Air-broadened half-widths of the 22 and 183 GHz water vapor lines, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp3601-3617, 2008.

Cadeddu, M.P., V. H. Payne, S. A. Clough, K. E. Cady-Pereira and J. C. Liljegren, Effect of the oxygen line parameter modeling on temperature and humidity retrievals from ground-based microwave radiometers, IEEE Trans. Geosci. Remote Sens., vol 45, no. 9, pp2216-2223, 2007.

Devi, V. M., D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, Line mixing and speed dependence in CO2 at 6348 cm-1: Positions, Intensities, and air- and self- broadening derived with constrained multispectrum analysis. J. Molec. Spectrosc., 242, 90-117, 2007a.

Devi, V. M., D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, Line mixing and speed dependence in CO2 at 6227.9 cm-1: Constrained multi-spectrum analysis of intensities and line shapes in the 30013<-00001 band. J. Molec. Spectrosc., 245, 52-80, 2007b.

Drouin, B.J., V. Payne, F. Oyafuso, K. Sung, and E. Mlawer, Pressure broadening of oxygen by water, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 133, January 2014, Pages 190-198, ISSN 0022-4073, http://dx.doi.org/10.1016/j.jqsrt.2013.08.001, 2014.

Koshelev, M.A., M. Yu. Tretyakov, G. Yu Golubniatnikov, V. V. Parshin, V. N. Markov, I. A. Koval: Broadening and shifting of the 321-, 325- and 380-GHz lines of water vapor by pressure of atmospheric gases, J. Molec. Spectrosc., 241, 101-108, 2007.

Lamouroux, J., H. Tran, A. L. Laraia, R. R. Gamache, L. S. Rothman, I. E. Gordon, J.-M. Hartmann, Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5-2.3 um region, J. Quant. Spectrosc. Radiat. Transfer, DOI: 10.1016/j.jqsrt.2010.03.006, 2010.

Rothman et al., The HITRAN 2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50, 2013.

Sung, K., L. R. Brown, R. A. Toth, and T.J. Crawford, Fourier transform infrared spectroscopy measurements of H2O-broadened half-widths of CO2 at 4.3 um. Canadian Journal of Physics, 87(5): 469-484, doi:10.1139/P08-130, 2009.

Tretyakov, M.Y., M.A. Koshelev, V.V. Dorovskikh, D.S. Makarov, and P.W. Rosenkranz: 60-GHz oxygen band: precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing-coefficients, J. Molec. Spectrosc., 231, 1-14, 2005.

MT_CKD Water Vapor Continuum References

Payne, V. H., E. J. Mlawer, K.E. Cady-Pereira and J-L. Moncet, Water vapor continuum absorption in the microwave, IEEE Trans. Geosci. Remote Sens, 49(6), 2194-2208, doi:10.1109/TGRS_2010.2091416, 2011.

Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Radiat. Transfer, 91, 233-244, 2005.

Delamere, J. S., S.A. Clough, V. H. Payne, E. J. Mlawer, D. D.Turner and R. R. Gamache, A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., doi:10.1029/2009JD012968, 2010.

Mlawer, E.J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D.C. Tobin, Development and recent evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370, 1-37, doi:10.1098/rsta.2011.0295, 2012.

Cloud Liquid Water Absorption References

Liebe, H.J, G.A. Hufford and T. Manabe. A model for the complex permittivity of water at frequencies below 1 THz. J. Infrared Millimeter Waves, 12, 659-674, 1991.

Turner, D.D., S. Kneifel, and M.P. Cadeddu, 2015: An improved liquid water absorption model in the microwave for supercooled liquid clouds. J. Atmos. Oceanic Technol., submitted April 2015.

Speed-Dependent Voigt Algorithm References

Boone, C. D., K. A. Walker, and P. F. Bernath, Speed-dependent Voigt profile for water vapor in infrared remote sensing applications. JQSRT, 105, 525-532, 2007.

Boone, C. D., K. A. Walker, and P. F. Bernath (2011): An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications. JQSRT, 112, 980-989.

Humlicek, J., Optimized computation of the Voigt and complex probability functions. JQSRT, 27(4), 437-444, 1982.

Hoke, M.L., S.A. Clough, W.J. Lafferty, and B.W. Olson: Line coupling in oxygen and carbon dioxide. In J. Lenoble and J.F. Geleyn, editors, IRS 88: Current Problems in Atmospheric Radiation, 368-371. A. Deepak Hampton, VA, 1989.    

Other Historical Algorithm References

Boukabara, S.A., Clough, S.A. and R.N. Hoffman, MonoRTM: A monochromatic radiative transfer model for microwave and laser calculation. In Programs and Abstracts : Specialist Meeting on Microwave Remote Sensing, 158, November 2001.

Clough, S.A., K.E. Cady-Pereira and S.A. Boukabara: Retrieval of Precipitable Water Vapor and Cloud Liquid Water from MWR Surface Measurements. In Programs and Abstracts : Specialist Meeting on Microwave Remote Sensing, 87, November 2001.

Clough, S. A., F. X. Kneizys, and R. W. Davies: Line shape and the water vapor continuum, Atmos. Res., 23, 229-241, 1989.

Hoke, M.L., S.A. Clough, W.J. Lafferty, and B.W. Olson: Line coupling in oxygen and carbon dioxide. In J. Lenoble and J.F. Geleyn, editors, IRS 88: Current Problems in Atmospheric Radiation, 368-371. A. Deepak Hampton, VA, 1989.    


Atmospheric and Environmental Research