MonoRTM
Principal Reference
Clough, S.A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono,
K. E. Cady-Pereira, S. Boukabara and P. D. Brown: Atmospheric radiative transfer
modeling: A summary of the AER codes, JQSRT, vol 91, no. 2, pp233-244, 2005.
Line Parameter References
Payne, V.H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J-L. Moncet,
E. J. Mlawer and S. A. Clough: Air-broadened half-widths of the 22 and 183 GHz water
vapor lines, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp3601-3617, 2008.
Cadeddu, M.P., V. H. Payne, S. A. Clough, K. E. Cady-Pereira and J. C. Liljegren,
Effect of the oxygen line parameter modeling on temperature and humidity retrievals
from ground-based microwave radiometers, IEEE Trans. Geosci. Remote Sens., vol 45,
no. 9, pp2216-2223, 2007.
Devi, V. M., D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth,
Line mixing and speed dependence in CO2 at 6348 cm-1: Positions,
Intensities, and air- and self- broadening derived with constrained
multispectrum analysis. J. Molec. Spectrosc., 242, 90-117, 2007a.
Devi, V. M., D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth,
Line mixing and speed dependence in CO2 at 6227.9 cm-1:
Constrained multi-spectrum analysis of intensities and
line shapes in the 30013<-00001 band. J. Molec. Spectrosc., 245, 52-80, 2007b.
Drouin, B.J., V. Payne, F. Oyafuso, K. Sung, and E. Mlawer, Pressure broadening
of oxygen by water, Journal of Quantitative Spectroscopy and Radiative Transfer,
Volume 133, January 2014, Pages 190-198, ISSN 0022-4073, http://dx.doi.org/10.1016/j.jqsrt.2013.08.001, 2014.
Koshelev, M.A., M. Yu. Tretyakov, G. Yu Golubniatnikov, V. V. Parshin,
V. N. Markov, I. A. Koval: Broadening and shifting of the 321-, 325- and 380-GHz
lines of water vapor by pressure of atmospheric gases, J. Molec. Spectrosc., 241,
101-108, 2007.
Lamouroux, J., H. Tran, A. L. Laraia, R. R. Gamache, L. S. Rothman, I.
E. Gordon, J.-M. Hartmann, Updated database plus software for
line-mixing in CO2 infrared spectra and their test using laboratory
spectra in the 1.5-2.3 um region, J. Quant. Spectrosc.
Radiat. Transfer, DOI: 10.1016/j.jqsrt.2010.03.006, 2010.
Rothman et al., The HITRAN 2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130, 4-50, 2013.
Sung, K., L. R. Brown, R. A. Toth, and T.J. Crawford, Fourier transform infrared
spectroscopy measurements of H2O-broadened half-widths of CO2 at 4.3 um.
Canadian Journal of Physics, 87(5): 469-484, doi:10.1139/P08-130, 2009.
Tretyakov, M.Y., M.A. Koshelev, V.V. Dorovskikh, D.S. Makarov, and
P.W. Rosenkranz: 60-GHz oxygen band: precise broadening and central frequencies of
fine-structure lines, absolute absorption profile at atmospheric pressure, and
revision of mixing-coefficients, J. Molec. Spectrosc., 231, 1-14, 2005.
MT_CKD Water Vapor Continuum References
Payne, V. H., E. J. Mlawer, K.E. Cady-Pereira and J-L. Moncet, Water
vapor continuum absorption in the microwave, IEEE Trans. Geosci. Remote
Sens, 49(6), 2194-2208, doi:10.1109/TGRS_2010.2091416, 2011.
Clough,
S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira,
S. Boukabara, and P. D. Brown, Atmospheric radiative transfer modeling:
a summary of the AER codes, Short Communication, J. Quant. Spectrosc.
Radiat. Transfer,
91,
233-244, 2005.
Delamere, J. S., S.A. Clough, V. H. Payne, E. J. Mlawer, D.
D.Turner and R. R. Gamache, A far-infrared radiative closure study in
the Arctic: Application to water vapor, J. Geophys. Res., doi:10.1029/2009JD012968, 2010.
Mlawer, E.J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D.C. Tobin, Development and recent
evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370, 1-37,
doi:10.1098/rsta.2011.0295, 2012.
Cloud Liquid Water Absorption References
Liebe, H.J, G.A. Hufford and T. Manabe. A model for the complex permittivity
of water at frequencies below 1 THz. J. Infrared Millimeter Waves, 12,
659-674, 1991.
Turner, D.D., S. Kneifel, and M.P. Cadeddu, 2015: An improved liquid
water absorption model in the microwave for supercooled liquid clouds.
J. Atmos. Oceanic Technol., submitted April 2015.
Speed-Dependent Voigt Algorithm References
Boone, C. D., K. A. Walker, and P. F. Bernath,
Speed-dependent Voigt profile for water vapor in infrared remote
sensing applications. JQSRT, 105, 525-532, 2007.
Boone, C. D., K. A. Walker, and P. F. Bernath (2011):
An efficient analytical approach for calculating line
mixing in atmospheric remote sensing applications.
JQSRT, 112, 980-989.
Humlicek, J., Optimized computation of the Voigt and complex
probability functions. JQSRT, 27(4), 437-444, 1982.
Hoke, M.L., S.A. Clough, W.J. Lafferty, and B.W. Olson: Line coupling
in oxygen and carbon dioxide. In J. Lenoble and J.F. Geleyn,
editors, IRS 88: Current Problems in Atmospheric
Radiation, 368-371. A. Deepak Hampton, VA, 1989.
Other Historical Algorithm References
Boukabara, S.A., Clough, S.A. and R.N. Hoffman, MonoRTM: A monochromatic
radiative transfer model for microwave and laser calculation. In Programs
and Abstracts : Specialist Meeting on Microwave Remote Sensing, 158, November
2001.
Clough, S.A., K.E. Cady-Pereira and S.A. Boukabara: Retrieval of Precipitable
Water Vapor and Cloud Liquid Water from MWR Surface Measurements. In Programs
and Abstracts : Specialist Meeting on Microwave Remote Sensing, 87, November
2001.
Clough, S. A., F. X. Kneizys, and R. W. Davies: Line shape and the water
vapor continuum, Atmos. Res., 23, 229-241, 1989.
Hoke, M.L., S.A. Clough, W.J. Lafferty, and B.W. Olson: Line coupling
in oxygen and carbon dioxide. In J. Lenoble and J.F. Geleyn,
editors, IRS 88: Current Problems in Atmospheric
Radiation, 368-371. A. Deepak Hampton, VA, 1989.
Atmospheric and Environmental Research